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Experimental study of interfacial solitary waves

By H. M I C H A L L E T† AND E. B A R T H É L E M Y
Laboratoire des Ecoulements Géophysiques et Industriels,

BP53, 38041 Grenoble Cedex 9, France

(Received 25 March 1997 and in revised form 21 January 1998)

A small-scale experiment was conducted (in a 3 m long flume) to study interfacial
long-waves in a two-immiscible-fluid system (water and petrol were used). Experi-
ments and nonlinear theories are compared in terms of wave profiles, phase velocity
and mainly frequency–amplitude relationships. As expected, the KdV solitary waves
match the experiments for small-amplitude waves for all layer thickness ratios. The
characteristics of ‘large’-amplitude waves (that is when the crest is close to the critical
level – approximately located at mid-depth) asymptotically tend to be predicted by
a ‘KdV-mKdV’ equation containing both quadratic and cubic nonlinear terms. In
addition a numerical solution of the complete Euler equations, based on Fourier
series expansions, is devised to describe solitary waves of intermediate amplitude. In
all cases, solitary interfacial waves in this numerical theory tally with the experimental
data. When the layer thicknesses are almost equal (ratio of lower layer to total depth
equal to 0.4 or 0.63) both the KdV-mKdV and the numerical solutions match the
experimental points.

1. Introduction
Oceanographers have observed internal solitary waves in many regions around the

worlds oceans especially in straits, on continental margins and coastal zones. For a
review of these investigations the reader is referred to Ostrovsky & Stepanyants (1989).
Most of the observed solitons propagate at the interface between the thermocline
and the deep sea. They are mainly excited by tidal flows over bottom topography
(Goryachkin, Ivanov & Pelinovsky 1992; Lamb 1994; Gerkema & Zimmerman 1994).
In lakes, such waves are thought to be generated in response to a strong wind
event (Farmer 1978; Stevens et al. 1996). They contribute to the vertical mixing, while
propagating at the interface, where a shear layer develops. The shoreward propagating
waves eventually break in coastal zones where they are thought to be responsible for
nutrient mixing (Sandstrom & Elliott 1984; Imberger 1995). They are also visible on
airborne Radar images (Fu & Holt 1982; Alpers & Salusti 1983; Watson & Robinson
1991). Very recently, Brandt et al. (1997) have developed a rotationless Boussinesq-
like model for the generation and propagation of internal waves (Diebels, Schuster
& Hutter 1994 earlier devised a similar model, while Bauer, Diebels & Hutter 1994
included rotation in this type of model). We note that large solitary waves which are
in good agreement with Synthetic Aperture Radar images of the Strait of Messina
are simulated. Large-amplitude internal waves are frequently observed at sea. For
instance, Kuznetsov, Paramonov & Stepanyants (1984) recorded an 80 m amplitude
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internal wave in the equatorial Atlantic Ocean (see also the investigations of Apel
et al. 1985 in the Sulu Sea).

Our overall aim in this study is to assess different theories and models of long
interfacial wave propagation. The KdV model holds for h0/λ � 1 and h/h0 = O(1)
(where h and h0 are respectively the lower and upper layer thickness and λ is a
characteristic wavelength). The KdV model is usually understood as a balance between
nonlinearities and non-hydrostatic dispersion that produces waves of permanent form.
More precisely the scaling required for these waves is

a

h0

= O

(
h0

2

λ2

)
, (1.1)

where a is the amplitude of the internal wave. Brandt et al. (1997) compared the
solitary wave characteristics of a Boussinesq-like numerical model with KdV solitons.
They show that for large amplitudes, that is for waves not complying with scaling (1.1),
KdV theory is not adequate. In contrast Miyata’s equation, designed to characterize
them, matches the Boussinesq waves (Miyata 1988) to a much better extent than a
second-order KdV equation. Miyata’s equation is of a similar nature to the equations
derived by Long (1956); it includes both quadratic and cubic nonlinearities but also
a wealth of other higher-order nonlinear and dispersive terms (see its formulation
recalled in the Appendix). Miyata (1988) based this new nonlinear equation on the
assumption that (h0/λ)

4 � 1 with no specification for the amplitudes. The same
assumption in surface wave theory leads to equations (1.30)–(1.32) in Mei’s book
(1989, p. 509). Stationary interfacial solitary wave solutions of Miyata’s equation are
expressed implicitly with integrals. This implicit relation is computed numerically
to give solitary wave profiles which are in good agreement with five experimental
profiles. Unfortunately, too few experimental results are presented in his paper to
reach any conclusion on the validity range of Miyata’s equation.

Theoretical papers are far more numerous than experimental studies on the subject.
Lee & Beardsley (1974), Segur & Hammack (1982), Kao, Pan & Renouard (1985),
Helfrich & Melville (1986) and Maurer, Hutter & Diebels (1996) studied internal
waves in a continuously stratified fluid composed of brine and water. Experiments
with continuously stratified fluid involve mixing and interface thickening – drawbacks
avoided with non-miscible fluids. Apart from the seminal study by Keulegan (1953),
experimental works, such as those of Walker (1973) and Koop & Butler (1981) were
performed for interfacial solitary waves in a two-fluid medium, which is the choice
we made. Two-layer systems allow straightforward comparison with simple analytical
results. A convenient way to compare experimental data to theoretical predictions is
to utilize lengthscale–amplitude relationships. This kind of comparison is extensively
developed by Koop & Butler (1981). Indeed to investigate the range of validity
and accuracy of the KdV, B–O (Benjamin 1967 and Ono 1975), and ‘finite depth’
(Kubota, Ko & Dobbs 1978) equations they experimentally estimated an integral
lengthscale (hereinafter called ‘wavelength’) related to the mass of the wave (figure 1)
by computing

λ =
1

2a

∫ ∞
−∞
η(x) dx, (1.2)

where η(x) is the interface displacement and x the horizontal coordinate. This is
compared to the theoretical value for a given amplitude. The mass has a theoretical
importance since it is an invariant of many nonlinear wave propagation models such
as the KdV equation.
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Figure 1. Schematic diagram and notation: λ = S/a = (1/2a)
∫ ∞
−∞ η(x) dx; h̄ = h− hc;

y = 0 is the horizontal bottom.

The cited experimental papers call for the following comments. First, these studies
deal essentially with small-amplitude waves (amplitude over total depth: a/H < 0.1
where H = h + h0). They all conclude that the first-order KdV equation is a very
good description of their experimental data. However, Koop & Butler (1981) noted a
discrepancy for larger amplitudes (a/H > 0.05). They therefore derive a KdV second-
order equation, which was also obtained for continuously stratified fluids by Lee &
Beardsley (1974), and which slightly improves the matching. Even though the second-
order KdV equation combines quadratic nonlinear terms with cubic ones, it is still
based on the scaling assumption (1.1). Secondly, the aforementioned experimental
analyses investigate waves propagating in media with one layer thinner than the
other (thinnest layer thickness to total depth less than 0.2). One recent exception
is reported in the paper by Wessels & Hutter (1996), who discuss measurements
of long internal waves (in a continuously stratified medium) for layer thickness
ratios of 1/4 and 3/4. They describe the interaction of long internal waves with
a sill. They consider the energy balance between transmitted and reflected waves.
Nevertheless, they do not compare either the wavelength or frequency of these waves
with the existing theoretical relations. Herein lies one of the specific motivations
for this paper: to investigate experimentally the characteristics of interfacial solitary
waves for a wide range of layer thickness ratios. Another recent exception is the
investigation by Michallet & Barthélemy (1997). That study is restricted to the rigid
lid case and three different thickness ratios. However, the paper mainly considers the
experimental technique and data processing which provide experimental results which
are used to demonstrate the relevance of this approach. Equivalent layer thickness
cases (as h/H = 0.4 or 0.63) are not investigated, and we do that in the present
paper.

In some shallow basins (Halpern 1971), as in some locations in the ocean (such
as the Strait of Gibraltar, Watson & Robinson 1991) the interface is found to be
close to the critical depth hc (equation (2.7)). For an interface located at this critical
level the KdV theory predicts no solitary wave since the nonlinear term vanishes
(Long 1956). For mild stratifications this critical level is roughly half the total
depth, that is h/H is close to 1/2. Kakutani & Yamasaki (1978) define asymptotic
series with an expansion parameter a/H of the order of (h̄/H), where h̄ is the
distance between the interface and the critical level. Therefore, this new theory models
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long waves propagating on an interface close to the critical level. It is generally
admited that this expansion parameter has to be small, consequently the theory
should only allow for weakly nonlinear waves. The new model equation (hereafter
referred to as KdV-mKdV) resembles KdV with an extra cubic nonlinear term. It
reads

ηt + (c+ α0η − α1η
2)ηx + βηxxx = 0. (1.3)

If α1 = 0, (1.3) is the KdV equation. For h = hc, α0 = 0. In such cases the equation
is still nonlinear but then the balance is between dispersion and cubic nonlinearity.
Details of the derivation of (1.3) and the expressions for the coefficients are found
mainly in the works cited in § 2 and reconsidered in Michallet (1995). Benney &
Ko (1978) also derived a KdV-mKdV equation for long large-amplitude waves in
stratified fluids. An equation of type (1.3), also including dissipation, was derived by
Helfrich & Melville (1986) to model internal solitary wave shoaling on slowly varying
topographies. Numerical integrations of this equation (called ‘EKdV’ for extended
KdV, see also Helfrich & Melville 1990) are in very good agreement in terms of wave
profiles with experimental results (Helfrich & Melville 1986). While shoaling, waves
may encounter parametric conditions for which the cubic nonlinear term dominates
the quadratic one. The behaviour about the turning point h = hc, for which the
quadratic nonlinear term vanishes, was also investigated numerically by Helfrich,
Melville & Miles (1984). However, these studies did not focus on the parametric
range of validity of the EKdV equation.

Funakoshi & Oikawa (1986) showed numerically that for strong stratification
(ρ/ρ0 = 3; where ρ and ρ0 are the densities of the lower and upper layers) and for
cases where h ∼ hc KdV-mKdV theory tallies with their numerical solution. They
compared the mass of waves solutions of the Euler equations with the mass of
solitary waves solutions of KdV-mKdV equations for various amplitudes. For the
single stratification chosen, their computations indicate that large-amplitude solitary
waves propagating on interfaces not too close to the critical level also match the mass–
amplitude relationship of the KdV-mKdV equation. This is a puzzling conclusion.
Indeed asymptotic theories are expected to hold only for small values of the expansion
parameter. From this stems another motivation of our study. We wish to investigate
for mild stratifications the behaviour of waves propagating on interfaces far from
the critical level and amplitudes spanning the distance between the interface level
and half of the total depth: such solitary waves will be designated ‘large’-amplitude
solitary waves. Michallet & Barthélemy (1997) have already pointed out the fact
that the measured solitary waves are of the KdV type for small amplitudes and
larger waves tend to verify a KdV-mKdV relationship. One of these ‘large’ internal
solitary waves was observed by Sandstrom & Elliott (1984) on the Scotian Shelf: a
solitary wave of approximately 53 m amplitude in a total depth of 160 m, with the
mid-thermocline level located at 50 m below the sea surface. In this configuration, an
equation of KdV-mKdV type (Kakutani & Yamasaki 1978; Miles 1981) is probably
appropriate to predict large-amplitude solitary waves, as also suggested by Ostrovsky
& Stepanyants (1989).

The paper is organized in the following manner. Section 2 describes the theoretical
background for understanding nonlinear waves along with a brief literature review.
Section 3 is devoted to a short description of the flume, the two-layer system, the
ultrasonic probes and the data processing. Finally, in § 4, results are given for wave
profiles, phase velocities and the amplitude–frequency relation of solitary interfacial
waves ranging from small to large amplitudes.
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2. Summary of previous theoretical results
2.1. The KdV solution

It is well known that the ‘KdV’ equation (an extension to two-layer systems of the
study by Korteweg & de Vries 1895, see e.g. Benney 1966; Miles 1979) is a relevant
approximation to describe solitary internal waves of small amplitude compared to
the total depth (see e.g. Koop & Butler 1981; Kao et al. 1985).

We recall the main results for a two-fluid system, which corresponds to our
experimental conditions. The notation is summarized on figure 1: h and H are the
interface and surface levels at rest; ρ and ρ0 are the lower and upper layer densities.
An interface displacement η(x, t) ruled by the KdV equation, possesses a solitary wave
solution expressed by

η(x, t) = a sech2

[
x− Ckt
λk

]
, (2.1)

where a and Ck are the amplitude and the phase velocity. The solitary wave steadily
propagates at constant phase speed Ck; λk in (2.1) is the characteristic length of the
solitary wave and is equal to λ defined by (1.2) (Koop & Butler 1981; see figure 1).
In the framework of the KdV theory with a free surface boundary condition, Ck and
λk are related to the layer thicknesses and densities as follows (the equations with the
rigid lid assumption may be found in Michallet & Barthélemy 1997):

Ck = C0 + a
C0

2h

ρ/ρ0 − h2(H − h)/(H ′ − h)3

ρ/ρ0 + h(H − h)/(H ′ − h)2
(2.2)

with

C0
2 =

gH

2

[
1−

(
1 +

4h(h−H)(ρ− ρ0)

ρH2

)1/2
]
, (2.3)

λk =

(
1

a

4h3

3

ρ/ρ0 + (H ′ − h)/h+ (H −H ′)3/
[
h(H ′ − h)2

]
ρ/ρ0 − h2(H − h)/(H ′ − h)3

)1/2

(2.4)

and

H ′ = H − C0
2

g
. (2.5)

(Note that H ′ = H for the rigid lid case.) The frequency ωk is preferred for comparison
with the experiments, since the data consist of recordings of interface displacement
η(x, t) at one location against time. The integral frequency scale ωk is defined by

ωk =
2a∫ ∞

−∞
η(t, x0) dt

=
Ck

λk
; (2.6)

λk in (2.4) is not defined for the specific value h = hc, where hc is defined by (Kakutani
& Yamasaki 1978)

hc
2(H − hc)

(H ′ − hc)3
=

ρ

ρ0

. (2.7)

If h = hc zero-amplitude solitary waves are the only solutions of KdV theory allowed.
Note that the polarity of the solitary wave is ruled by the position of the interface
with respect to the critical level hc: when the interface is below (above) hc the solitary
wave is of elevation (of depression). This behaviour is recognized to be supplied by
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the complete Euler equations (Craig & Sternberg 1991). This means, for instance, that
an interface disturbance which crosses the critical level hc cannot be of permanent
type propagating steadily at constant velocity (Koop & Butler 1981).

2.2. The KdV-mKdV solution

The KdV-mKdV nonlinear equation (Miles 1981; Funakoshi 1985; Funakoshi &
Oikawa 1986) predicts solitary waves of amplitude a ranging from 0 to h̄, where h̄ is
the distance between the interface and the critical level:

h̄ = h− hc; (2.8)

h̄ is the limiting amplitude ac of the wave. The main assumption in deriving this
equation is to consider the wave amplitude to be of the same order as h̄, which is
also small compared to the total depth. The wave of the limiting amplitude ac has
an infinite mass (λ tends to infinity). An interfacial solitary wave whose interface
elevation η(x, t) is ruled by the KdV-mKdV equation also travels at constant speed
without change of shape and is expressed by (other solitary waves of bore type also
exist)

η(x, t) = a
sech2 [κ(x− Cmt)]

1− µ tanh2 [κ(x− Cmt)]
; (2.9)

the expressions for µ, κ and Cm are (for a free upper boundary)

if h̄ > 0: µ = h′′/h′,

if h̄ < 0: µ = h′/h′′,

}
(2.10)

κ =

(
−B
A
h′h′′

)1/2

(2.11)

with

A =
2C0m

3H ′

[
H ′ − hc
H − hc

[
(H ′ − hc)3 + (H −H ′)3

]
+ hc

3

]
, (2.12)

B =
−C0m

2(hc −H ′)2
, (2.13)

h′ = −β
α
h̄− 1

α
[(Cm − C0m)/B + (β2 − α)h̄2]1/2, (2.14)

h′′ = −β
α
h̄+

1

α
[(Cm − C0m)/B + (β2 − α)h̄2]1/2, (2.15)

α = 1 +
5

4

H −H ′
H ′

, (2.16)

β = 1 +
1

2

H −H ′
H ′

, (2.17)

Cm = C0m + B
[
(α a+ β h̄)2 − (β2 − α)h̄2

]
, (2.18)

where H ′ and hc are defined as in (2.5) and (2.7); C0m is defined by equation (2.3)
with h = hc.
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Figure 2. Dimensionless integral lengthscale λ (1.2) of solitary waves versus their dimensionless
amplitude. All the curves plotted are theoretical predictions. Rigid lid case for ρ0/ρ = 0.78: numerical
results (◦); analytical curves KdV first-order (– · –), KdV second-order (Koop & Butler 1981) (· · ·),
KdV-mKdV (– –) and Miyata (—). (a) h/H = 0.09, L/H ∼ 80; (b) h/H = 0.63, L/H ∼ 350.

The polarity of the solitary waves is ruled by the sign of h̄, i.e. a 6> 0 for h̄ >6 0.
A ωm equivalent to (2.6) is computed for large-amplitude waves:

ωm =
2a∫ ∞

−∞
η(t, x0) dt

=
Cm κµ

1/2

arctanh µ1/2
. (2.19)

2.3. Numerical solutions

Both KdV and KdV-mKdV equations possess periodic wave solutions (‘cnoidal
waves’). When their wavelength tends towards infinity, these waves tend towards
solitary wave solutions. The foundation of the numerical approach, first described by
Funakoshi & Oikawa (1986), is to consider periodic waves ‘exactly’ fulfilling (in a
numerical sense) the Euler equations. The unknowns are written as Fourier series. The
numerical procedure applies to truncated series. The method is reported by Holyer
(1979) for interfacial waves, and Rienecker & Fenton (1981) for progressive surface
waves. A very large value is chosen for the wavelength L of the computed waves: L is
more than 80 times H . These very long waves are akin to solitary waves. The length
L of the computational box is also chosen in relation with our experimental set-up.
Indeed the numerics compare well to the experimental results since our flume length
is roughly 30 times H .

We generalize the method of Funakoshi & Oikawa (1986) to take into account free
surface conditions. Two equations are obtained at the surface instead of one. The
surface displacement is also written as a truncated Fourier series. The five relations
written at N = 160 collocation points yield a system of (5N + 2) nonlinear equations
(instead of (3N + 1) equations on N = 200 points for the rigid lid case).

An iterative Newton–Raphson scheme is employed to solve the system. For each
depth ratio, the initial small-amplitude guess is a linear sinusoidal wave of very small
amplitude (a/H = 10−4) for the rigid lid configuration. The solution computed at the
next step from this guess with the complete nonlinear equations is of a slightly larger
amplitude. The resulting solution provides the guess for the next iterative process and
so forth until the near limiting amplitude.
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Figure 3. Schematic diagram of the experimental set-up; the length of the flume is 3 m and the
width 10 cm; the interface level h ranges from 1 to 9 cm approximately with total depth H ∼ 10 cm;
density ratio ρ0/ρ = 0.78. An initial condition for generating a solitary interfacial wave is also
represented.

2.4. Theoretical comparisons

This theoretical part is concluded by presenting on figure 2 the main characteristics
of interfacial waves as given by the models and theories. On both figures 2(a) and
2(b) the numerical solutions and Miyata’s model can be seen to be in agreement
with the KdV model in the small-amplitude range. On the other hand they match
the KdV-mKdV model for very large waves. Note that KdV-mKdV and Miyata’s
relations predict the same limiting amplitude value, for which the mass (and thus
the wavelength) tends towards infinity. The curve corresponding to the numerical
computation merges with Miyata’s solutions, except near this limiting amplitude.
Numerical convergence is then hard to obtain, because of the approaching theoretical
singularity. λ probably becomes too large to consider the cnoidal solution as a soliton
(for say λ > L/70).

Predictions of the KdV second-order theory (Koop & Butler 1981) are also plotted.
The curve (dotted line) lies between KdV and Miyata’s curves. However it mono-
tonically follows the KdV first-order scaling. It appears that the improvement over
the KdV first-order scaling is small if we regard the numerical predictions as exact.
Therefore, it is felt that the KdV second-order equation is unable to achieve as good
a description of solitary waves of large amplitudes as the KdV-mKdV equation might
do. Moreover figure 2 also shows that the validity range of the KdV second-order
theory is of equivalent extent. Consequently we will not plot the KdV second-order
scalings when comparing the models with the experimental results in § 4.

The important conclusion is: Miyata’s solitary wave solution is identical to the
numerical solution for the layer thickness ratios considered. For an interface close
to the critical level (h/H = 0.63: figure 2b), KdV-mKdV, Miyata’s curves and the
numerical data obtained by the method of Funakoshi & Oikawa (1986) merge
together. All these general new features will be discussed in § 4 by comparison with
the experimental data.

3. Facility and experimental procedure
The experimental set-up, including the probing device and the data processing,

have been extensively discussed in Michallet & Barthélemy (1997). The main points
are recalled here. The wave flume, schematically drawn on figure 3, is approximately
3 m long and has a 15 cm × 10 cm cross-section. Over the total flume length the
bottom is horizontal with an average error of 0.01 cm. No absorbing device was
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installed. Waves reflect off the vertical wall at the downstream end of the flume. The
two fluids chosen are immiscible liquids having different specific gravities, respectively
petrol product ‘Exxsol D60’ (density ρ0 = 0.78 kg l−1, viscosity ν = 1.64 m2 l−1) and
water (ρ = 1 kg l−1). Walker (1973) used a two-fluid system with comparable physical
characteristics. As noted before, two-fluid systems are convenient to use: no mixing
occurs at the interface, which is thus always well defined.

Interfacial long waves are generated using a gate-type wave-maker, similar to
that described by Kao et al. (1985). A watertight, manually movable gate is located
vertically near the upstream end of the tank (see figure 3). The interface level behind
the gate is modified so as to be different from that of the main part of the flume
by any desired amount. The gate is lifted to allow the step-like condition to evolve
downstream into waves. The wave-generation system actually has two degrees of
freedom: the height di and the length li of the step-like condition. A difference ds
in surface levels between each side of the gate, proportional to the difference di in
interface levels (figure 3) is generated:

ds ∼ −
ρ− ρ0

2ρ0

di ∼ −0.14 di.

Experimentally this difference creates barotropic waves. It is worth noting that the
height of the resulting fast mode is much smaller than in a piston-like generating
system, such as those used by Walker (1973) or Segur & Hammack (1982). The gate
is not completely lifted out of the petrol but stopped just below the free surface.
Practice has also shown that a ‘smooth’ and ‘slow’ removal is preferable to a ‘rough’
one to minimize the generation of barotropic disturbances. They are, nevertheless,
noticeable on figure 4(b) for t < 10 s. Note that when the thinnest layer is on the
top (h/H > 0.5) these barotropic disturbances are slightly greater but yet negligible
compared to the baroclinic waves. Consequently, we never felt it necessary to filter
these waves out. Nonetheless, our fitting technique described below probably removes
some of the barotropic signatures. Moreover, on the downstream side of the gate, the
flume could be totally covered by a rigid lid, avoiding the propagation of the fast
mode.

Some authors reporting experiments with a free surface upper boundary made the
assumption when analysing the data that this upper boundary can be considered
as rigid (see e.g. Koop & Butler 1981; Kao et al. 1985). This approximation is
satisfactory, but only in the case of a small difference in densities (ρ − ρ0 ∼ 1%):
the resulting internal solitary wave is then approximately independent of whether
the upper boundary is rigid or free (Keulegan 1953). But in our experiments, the
density difference is rather large (ρ − ρ0 = 22%): to consider the free surface as
a rigid lid is inaccurate. Indeed the computation of hc (2.7) depends on the upper
boundary condition. When ρ0/ρ = 0.99, hc/H = 0.501 with the rigid lid assumption,
and hc/H = 0.499 for a free surface. But if ρ0/ρ = 0.78, hc/H = 0.531 and 0.486,
respectively.

Six ultrasonic probes were located along the centre of the flume. The outputs
are recorded simultaneously on a PC. The raw signal is processed by fitting the
experimental points with a function calculated by a least-square method (Michallet
& Barthélemy 1997). The fitting function is of the form

F = a0 + a2

(
1− tanh2 [ω (t− t0)]

)
, (3.1)

where a0 (mean level of the interface after the initial condition for the solitary wave is
created), t0 (time at which the wave maximum is recorded), a2 (wave amplitude) and ω
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Figure 4. Time series at six locations of interface displacement (η) after generation and reflection of
interfacial waves (free surface condition). The encircled areas are enlarged on figure 6. (a) The main
pulse is very close to a solitary wave; thickness ratio h/H = 0.20 with H = 10.04 cm. Distances
of probes from wave-maker (from top to bottom): d = 90, 120, 150, 180, 210, 240 cm. (b) The
leading pulse before reflection points to a non-permanent wave, while after reflection it acquires a
symmetric solitary wave-like profile; h/H ∼ 0.40 with H ∼ 5.4 cm. d = 80, 110, 140, 170, 200 and
230 cm (from top to bottom).

(characteristic frequency) are the unknown numerical values computed by the fitting
process. The quadratic error between (3.1) and the signal is minimized. Formula (3.1)
is fitted mainly on the front part of the wave. This front part is not disturbed by the
dispersive train or a possible smaller soliton always trailing behind. The pulse shape
given by (3.1) is of the same kind as the wave profiles obtained in (2.1) and (2.9), but
in the theoretical equations the frequency is linked with the amplitude, densities and
layer thicknesses (2.6), (2.19) while for (3.1), a0, t0, a2 and ω are independent numerical
values deduced from the experimental signals. The processed experimental values of
a2 and ω are thus obtained. The latter is compared to the analytical values given by
(2.6) and (2.19). This data processing procedure filters noise but also, as mentioned
above, a fraction of the barotropic signatures on the interface while preserving the
nonlinear features of the waves. It provides an automatic data elimination scheme by
which pulses too perturbed by barotropic waves or other sources are not analysed
(Michallet & Barthélemy 1997).

The phase velocity C is estimated in a different way, from the outputs of two
consecutive probes. This value is thus deduced from the distance separating the two
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Upper h H ac = |h̄|
h/H condition (cm) (cm) (cm) a/H a/ac

0.09 Rigid lid 0.92 10.24 4.52 0.02–0.12 0.045–0.27
0.19† Rigid lid 1.95 10.24 3.49 0.01–0.22 0.03–0.65
0.20 Free surface 2.02 10.02 2.85 0.01–0.225 0.035–0.79
0.29† Rigid lid 2.97 10.24 2.47 0.01–0.11 0.04–0.46
0.40‡ Free surface 2.15 5.42 0.48 0.01–0.07 0.11–0.78
0.63‡ Rigid lid 3.12 4.98 0.48 0.04–0.07 0.42–0.73
0.77 Free surface 4.37 5.66 1.62 0.02–0.23 0.07–0.88
0.84 Rigid lid 8.59 10.22 3.16 0.01–0.22 0.03–0.71
0.91 Free surface 7.28 8.00 3.39 0.005–0.19 0.01–0.45
0.96† Rigid lid 12.94 13.48 5.78 0.002–0.15 0.005–0.35

Table 1. Summary of experimental conditions: h and H are the interface and surface levels at
rest, h̄ is the difference between h and the critical level hc, ac is the limiting amplitude defined by
the KdV-mKdV theory. Also presented are the ranges of amplitude a of the measured solitary
waves. For all runs the density ratio is ρ0/ρ = 0.78. Data noted † were presented in Michallet &
Barthélemy (1997); ‡ concern reflected waves only.

probes and the times at which the maxima of the two corresponding signals pass
them. The amplitudes of the two pulses are not equal. Therefore, the estimation of
C is ascribed to a wave of average amplitude. Note that the solitary wave is shifted
during its interaction with the wall (see e.g. Maurer et al. 1996). Therefore the phase
velocity is never estimated with two pulses of the same wave separated by a reflection.
Moreover the probes are located far enough from the reflecting walls (at least 30 cm
away) so that any instabilities or transient motions which might be created during
the interaction do not alter the wave when it is measured.

The experimental errors in the data provided by the processing techniques are the
following: 8 % (about 0.06 cm) on the amplitude a2; 11 % (about 0.4 s−1) on the
frequency ω; 9 % (about 1.6 cm s−1) on the phase velocity C . These estimations
were obtained by comparing the simultaneous outputs of probes located at the same
distance from the gate. These estimations allow error bars to be plotted. These bars
indicate the errors due to sampling and processing techniques. More details on error
estimations are found in Michallet & Barthélemy (1997).

4. Comparison with experiments
Series of long waves were generated at the interface of the two-layer system. The

parameters of these experiments are summarized in table 1. The probes are located
along the flume in order to examine the propagation of the solitary wave. Each
wave is recorded as it travels three times along the flume (waves can be recorded and
processed once they are reflected). The recordings of two different runs are reproduced
on figure 4.

On figure 4(a) for which h/H = 0.20 (a thin layer case), the leading solitary wave is
followed by a second smaller wave. It is probably a smaller soliton which propagates
more slowly. In fact the time interval between two maxima increases with time t. On
the first probe (d = 90 cm) it measures 1.3 s before reflection (graph at the top of
figure 4a). On the same probe but after one reflection (the waves have then travelled
476 cm) the time lapse is 3.1 s. The frequency–amplitude relationship of the leading
solitary wave as it passes each probe is plotted on figure 5(a). We recall that the
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Figure 5. Characteristic wave frequency ω of the runs of figures 4(a) and 4(b): incident (◦), once (3 )
and twice (2 ) reflected waves; analytical curves: KdV first-order (– · –) and KdV-mKdV (– –);
numerical curve (—). (a) h/H = 0.20; H=10.04 cm. (b) h/H = 0.40; H=5.4 cm. ac is the limiting
amplitude of the KdV-mKdV theory.

frequency scale such as (2.6) is preferred to the integral lengthscale (1.2). Computing
(1.2) from the data also involves deducing the phase velocity from the data; the error
on (1.2) is therefore larger since the error on the phase velocity has to be added to
the error on the frequency. On figure 5(a), the group of points of larger amplitudes
corresponds to the incident wave, the group of four points in the middle corresponds
to the wave after one reflection and the group on the left corresponds to the twice
reflected wave. The damping of the wave during its propagation is significant. The
wave actually loses about 3% of its amplitude after travelling 30 cm between two
probes. This damping rate is of the same order as the one measured by Koop & Butler
(1981). Numerous studies (e.g. Leone, Segur & Hammack 1982; Helfrich & Melville
1986) have shown a qualitative agreement between laboratory measurements and
models assuming slow adiabatic changes in wave properties. But it is not the purpose
here to study such dissipation (see also Maurer et al. 1996 for such a study). Indeed
on figure 5(a), all points merge with the numerical curve for which viscous effects
are neglected: whatever the dissipation, the frequency–amplitude relation is fulfilled
at every stage of wave propagation. Accordingly the balance between dispersive and
nonlinear effects is not affected by viscous ones still acting, we suggest, at much bigger
timescales.

Important conclusions are drawn from this plot. For small amplitudes (a/H < 0.1)
the experimental points are not very far off the KdV curve, the data are close
to the numerical curve for the entire amplitude range and seem to tend towards
the KdV-mKdV curve for the larger amplitudes. The profile corresponding to one
of the largest-amplitude points (to the right on figure 5a) is shown magnified on
figure 6(a). This leading solitary wave profile corresponds to the encircled zone of
figure 4(a). This experimental profile is compared to the theoretical profiles (KdV,
KdV-mKdV and numerical) of the same amplitude. The front side of the wave is
unperturbed and merges perfectly with the numerical profile, although the back
side is slightly modified by the trailing smaller soliton. Figure 6(a) is a meaningful
example of the general feature of most solitary waves measured: the KdV profile
is narrower than the experimental one, which is itself narrower than the KdV-
mKdV profile. Figure 7(a) shows the dimensionless phase velocity C/(gH)1/2 against
the dimensionless amplitude a/H for experimental conditions identical to those of
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Figure 7. Dimensionless phase velocity of interfacial waves versus dimensionless amplitude. Inci-
dent (◦), once (3 ) and twice (2 ) reflected waves; analytical curves: KdV first-order (– · –) and
KdV-mKdV (– –); numerical curve (—). (a) h/H = 0.20. (b) h/H = 0.40, C0 is the linear long wave
phase speed.

figure 5(a). The match between the experimental data and the numerical curve is
very good. The KdV-mKdV predictions and the numerical curve are almost equal.
Taking into account the scattering of the experimental points, it is therefore difficult
to differentiate KdV-mKdV from the numerical solution, while this is possible for
the frequency (figure 5a). On the corresponding frequency–amplitude plots the KdV-
mKdV result is clearly different from the numerical solution with respect to the size
of the error bars. This point was already mentioned by Koop & Butler (1981): the
frequency–amplitude relationship is certainly a good criterion for testing theoretical
predictions.

For h/H = 0.4 (an equivalent layer thickness case) we plot the interface displace-
ments recorded on the six probes (figure 4b) and the corresponding plot of the
frequency–amplitude relation (figure 5b). Note the big dispersive wave trailing the
leading wave (for t < 23 s). The two circles (◦) on figure 5(b) correspond to waves
measured on the two probes nearest to the endwall. The four other incident waves
(for t < 17 s) have been eliminated by the processing procedure because they were too
far from being symmetric (see in Michallet & Barthélemy 1997 how the asymmetry is
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quantified). One of these points is related to a wave of amplitude exceeding the critical
amplitude ac as predicted by the KdV-mKdV theory (ac/H = 0.086 for this thickness
ratio). This seems to be in contradiction with the KdV-mKdV theory. If this same
leading wave is considered once it is reflected and is measured on the d = 140 cm plot,
figure 6(b) shows that it has formed while propagating and dissipating into a symmet-
ric wave that is well reproduced by the numerical profile. The dispersive wave trailing
the soliton is now very weak (figure 4b). The phase velocity–amplitude relationship
for this thickness ratio (h/H = 0.40) is shown on figure 7(b). The experimental values
are systematically smaller than the long linear wave phase speed C0 (defined by (2.3)).
This shift is not very large: of the order of 5%, which is less than the error ascribed
to each point. This was also a feature of some waves measured by Segur & Hammack
(1982). They attributed this to viscous effects. Probably the hypothesis that dispersion
and nonlinearities ‘work’ faster than dissipation may be a shortcoming in cases with
thick layers. Nevertheless the frequency–amplitude relationship (figure 5b) seems to
indicate that the waves are described by the KdV-mKdV model in a satisfactory
way.

It is experimentally difficult to produce near-limiting-amplitude waves, particu-
larly when the interface is near the critical level. The step-like initial condition, if
not too small, breaks dramatically and the wave requires a long distance to be-
come established. Indeed, for these types of layer thickness ratios, waves have a
longer sorting distance (i.e. the travel distance required for a set of ordered solitons
to evolve and separate from the initial disturbance, see Hammack & Segur 1974)
than in a thin layer case (Pan 1984; Michallet 1995), mainly because all the waves
are propagating at a similar phase velocity. It is essential to produce large initial
conditions and to measure only the reflected waves in order to consider that they
have travelled sufficiently to be symmetric in shape. Therefore only the points cor-
responding to reflected waves are plotted on figure 8(a). The experimental points
are scattered and do not precisely match any theoretical curve. This scattering is
certainly due to the fact that waves need long timescales to become established,
as discussed above, but also to an additional error. This error is explained by the
fact that the incident waves travel in a two-layer system of thickness ratio h/H ,
which differs from the h/H encountered by the reflected waves. Indeed the wave
loses mass by dissipation, thus modifying h/H (this is noticeable on figure 4b).
When the level at rest h is very close to the critical level hc, a small variation
of h/H induces a considerable difference in h − hc, and thus a large shift in the
theoretical curves, which are sensitive to this difference. With regard to this addi-
tional error, it may be concluded that the numerical and the KdV-mKdV analytical
frequency–amplitude relations are a good approximation of the experimental data for
h/H = 0.40.

Results for the frequency–amplitude relationship are presented for other thickness
ratios h/H = 0.63, 0.77, 0.84, 0.91 and 0.09 on figure 8(b–f), respectively. Some are for
a rigid lid condition (h/H = 0.63, 0.84 and 0.09), while the remaining ones are for a
free surface configuration. The same trends as those described above are again found:
the experimental points match the numerical curves, they asymptotically satisfy the
KdV theory for solitary waves of small amplitude, while they asymptotically tend
to conform to KdV-mKdV theory for the large amplitudes. The concept of ‘large
amplitude’ is highlighted by all these examples. Indeed when the amplitude is more
than 0.4 times the limiting amplitude ac, the data comply more with the KdV-mKdV
curve than with the KdV one. Otherwise when the level at rest is close to the
critical level (for h/H = 0.63) the data, the KdV-mKdV curve and the numerical
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Figure 8. Characteristic frequency ω versus the dimensionless amplitude a/H: incident (◦),
once (3 ) and twice (2 ) reflected waves; analytical curves: KdV first-order (– · –) and
KdV-mKdV (– –); numerical curve (—). (a, c, e) for a free surface condition; (b, d, f) for a rigid
lid condition.

curve are very close over the entire amplitude range. The phase velocity is also
plotted versus the amplitude on figure 9. For this thickness ratio (h/H = 0.09), the
differences between the various theoretical curves are sufficiently large to allow a
comparison with the experimental data. The behaviour described above concerning
the frequency–amplitude relationship is again found: the waves verify KdV theory
for small amplitudes (a/H < 0.05) and tend to verify KdV-mKdV theory for large
amplitudes (a/H > 0.1).
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numerical curve (—).

5. Conclusions
Based on the theoretical comparisons of § 2, the following general observations may

be made: (i) the numerical solution matches the KdV theory for small amplitudes;
(ii) the numerical solution also correctly approximates the KdV-mKdV for large
amplitudes; (iii) when the interface is close to the critical level hc (say 0.4 6 h/H 6
0.63) the numerical solution and KdV-mKdV theory are in good agreement; (iv)
Miyata’s equation (Miyata 1988) predicts solitary wave solutions that tally with
the numerical solutions for a rigid lid assumption, and predicts the same limiting
amplitude as the KdV-mKdV theory.

These conclusions have been assessed by comparing experimental data with the
aforementioned models. The classical KdV equation provides wave characteristics
that indeed fit with the characteristics of experimentally generated small-amplitude
solitary waves (0.01 < a/H < 0.05) for all layer thickness ratios. This was already
partially demonstrated in the rigid lid case in Michallet & Barthélemy (1997). New
results concerning large-amplitude waves (that is wave heights of the order of the
distance h̄ separating the interface from the critical level) and the KdV-mKdV model
are obtained. The experiments show that h̄ is an important parameter in choosing
the relevant model of nonlinear waves in two-fluid systems of finite depth. First, in
cases where the interface is ‘far’ from hc (h/H < 0.4 and h/H > 0.63) large-amplitude
interfacial solitary waves show experimental frequency–amplitude relationships that
tend to be predicted by KdV-mKdV equation (especially for h/H ∼ 0.2 and h/H ∼
0.8). Secondly it has been established experimentally in the present paper that for
h/H = 0.4 and h/H = 0.63 waves are of KdV-mKdV type for all amplitudes
(0.1 < a/h̄ < 0.8) as predicted by Kakutani & Yamasaki (1978) although the data in
these cases are more scattered than in the others. This was expected for it corresponds
to the assumptions included by Kakutani & Yamasaki (1978) in the KdV-mKdV
model. Finally, for the intermediate range of amplitude, only numerical integration
of the full Euler equations achieves sufficient matching, and this is true for all depth
ratios.

In addition experiments suggest that interface disturbances of amplitudes larger
than ac are too far from being symmetric to be considered as established and
thus as solitary waves. Theoretical (Kakutani & Yamasaki 1978) and numerical
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works (Funakoshi & Oikawa 1986; Turner & Vanden-Broeck 1988; Evans & Ford
1996) predict that the solitary wave has a broadening lengthscale for nearly limiting
amplitudes. However, it was extremely difficult to generate such waves experimentally
since there is considerable breaking during the generation process and other significant
dissipative effects during propagation.

The first author is grateful to the French Ministry of Education (mesr), which
supported this work. The authors would like to thank J.-M. Barnoud for his help in
constructing the experimental facilities, and D. Auchère and J.-P. Barbier-Neyret for
the improvement of the ultrasonic measuring device.

Appendix. The Miyata equation (Miyata 1985, 1988)
Consider a two-fluid system with the rigid lid assumption (using the same notation

as in § 2). Both fluids are assumed to be incompressible and irrotational. The waves
are assumed to be long: (

h+ a

λ

)4

� 1 and

(
h0

λ

)4

� 1 (A 1)

if we consider that h < h0. Note that the wave amplitude a may be larger than h, as
long as (A 1) is satisfied. Introducing the new variables θ = (x− Ct)/h and η′ = η/h,
the following differential equation is obtained:

F2r2(1 + rs)

3(r + s)

(
dη′

dθ

)2

+
Eη′

2 + Dη′
3 − η′4

1 + Gη′
= 0 (A 2)

where

D =
r2 − s+ r(F2 − 1)(1− s)

r + s
, E = −r(F2 − 1), G =

r2s− 1

r(1 + rs)
,

r =
h0

h
, s =

ρ0

ρ
, F2 =

(r + s)C2

g(1− s)h0

=
(1 + a/h)(1− a/h0)

1− (a/h)(1− s)/(r + s)
.

Equation (A 2) can be analytically solved in terms of incomplete elliptic integrals of
the first and the third kind. Note that if the interface is close to the critical level (2.7),
G tends toward zero and (A 2) becomes a KdV-mKdV equation.
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